Challenges of massive RES-E integration to the grid - TSO

Péter Kaderják

SEERMAP training
March 7, 2017
Athens, Greece
Overview

• Ensuring system security under liberalized market circumstances

• Challenges from connecting massive RES-E resources to the grid

• Managing increased flexibility needs and costs

• Network planning and development to support RES-E integration
Under any market model, the transmission system operator has a central role. Takes care over system security and balance, otherwise...
The origin of the balancing responsibility of the TSO: potential for system imbalance

Balancing energy = Load curve – aggregate schedule – operational imbalance
System balancing before unbundling and market liberalization

- Before market liberalization the vertically integrated utility (VIU) provided system balancing by relying on its own demand forecast and generation portfolio.
- Regulating capacities were built and centrally dispatched by the VIU.
- Balancing and related system reserve costs were recovered by bundled regulated tariffs.
- Utility focus on system security but less on related costs.
System balancing by a VIU by its own generation

- **Generation / load, MW**

- **Baseload generation** (90-95%)
- **Load following generation** (30-40%)
- **Peaking units** (5%)

Load curve

Hours
The big change for the TSO after unbundling: decentralised load and dispatch scheduling

Transmission System Operator (TSO)
Responsible for system security and balance
Day-ahead aggregate schedule
Operation of ancillary services and balancing market

Self-scheduling: \(L \equiv G \) for each BRP!

Balance Responsible Party 1

Balance Responsible Party 2

Balance Responsible Party 3

Need for separate ancillary services products / market emerges
Unbundling and the introduction of competitive markets required that balancing and ancillary services be clearly defined and monetized.

Markets have been created for several ancillary services in order to minimize the cost of maintaining system reliability.

Also a separate balancing market is created to meet customers’ balancing energy needs.

Pricing of these services might be market based or regulated, depending on the level of market concentration.
Ancillary services

- Ancillary services are some reserved services, controlled (owned or procured) by the TSO, for keeping a balance between supply and demand, stabilizing the transmission system and maintaining power quality.
- Two main characteristics of the electricity system that need to be regulated:
 - Frequency
 - Voltage
- Types of ancillary services
 - **Frequency regulation by maintaining a constant balance between generation and load using active power reserves**
 - Voltage and reactive power control
 - Black start capability: ability to restart a grid following a black-out
 - Islanding capability
Active Power Reserves for frequency regulation

(Forever Primary Reserve) 0-30 sec.

(Forever Secondary Reserve) 30 sec. – 15 min

(Forever Tertiary Reserve) over 15 min
The link between the balancing process and active power reserves procurement by the TSO after unbundling.
System regulation reserves market

- On these markets the TSO buys an option from accredited market players to dispatch them at a given time to increase or decrease their generation (or consumption) with a given amount.
- **Demand side of the market**: the TSO is a single buyer; the amount and composition of the needed regulation reserve is defined by the TSO.
- **Supply side of the market**: mainly power plants; sometimes a few large customers that are able and willing to decrease or increase their consumption for short notice.
- **Regulatory reserve prices** are either regulated or market based
Balancing market

• On these markets the TSO supplies balancing energy to system users / balance groups that can not meet their schedules.

• **Demand side of the market**: producers, customers or their aggregators (balance groups) that can not meet their production or load schedule in a given hour

• **Supply side of the market**: usually the TSO is the central provider of balancing energy; however, the balance group responsible often offers for its members balancing energy options

• **Balancing energy prices** are either market based or regulated
Balancing market operation and its relation to the regulation reserve market - Hungary

- **TSO procure reserve capacity**
- **The selected market participants must provide their capacity on the daily auctions**
- **TSO pays capacity fee (€/MW)**
- **Daily balancing auctions**
- **Other market players**
- **Cheapest market player provide balancing energy**
- **Energy fee (€/MWh, etc)**
- **One of the balancing group can not meet its schedule**
Overview

- Ensuring system security under liberalized market circumstances
- Challenges from connecting massive RES-E resources to the grid
- Managing increased flexibility needs and costs
- Network planning and development to support RES-E integration
1. Is there a problem here?
RES-E potentials for the EU: North Sea wind, North Africa solar

Integrate offshore wind generation

Integrate RES-e from EU and non-EU countries
Problem 1: distance from load

• High quality RES-E resources often located far from load centres
• Connecting high quality RES-E requires massive investment into new HV transmission
• Questions:
 • Who should pay for the costs of connection?
 • Is there any reason to socialize the connection cost for some new market participants?
 • Should the cost of connection depend on the location of the connection point?
 • What to do with excess demand for connection at a connection point (substation)?
 • How to establish priorities for new connection?
 • How to plan for the expansion of the grid?
400 kV network - Turkey
Location of wind license applications – Turkey
Solar radiation map – Turkey
Connection cost allocation example

Source: Swinder (2008)

Germany: 100% socialisation of the cost of connecting North Sea offshore wind
2. Is there a problem here?

Residual load = system load – intermittent generation

Load curve

Intermittent generation

Hours

Generation / load, MW
2. Is there a problem here?

Renewables need flexible backup, not baseload
Estimated power demand over a week in 2012 and 2020, Germany

Source: Volker Quaschning, HTW Berlin

Volker Quaschning, 2010
Share of intermittent generation in installed capacity, EU, 2015

Wind and PV capacities compared to installed capacity, %

- Wind
- PV
Problem 2: increased demand for system flexibility

• As intermittent renewables penetrate, the residual load to serve by conventional generation decreases and becomes volatile

• Financial viability of conventional generation deteriorated
 ‣ Reduced utilization rate (natural gas)

• Negative electricity wholesale prices appear
 ‣ High cost of down regulating conventional units (nuclear, coal)
• What to do when intermittent generation (IG) falls well below system load?
• What to do when intermittent generation (IG) far exceeds system load?
• Which market participants can best help me (the TSO) keeping system security?
• How to discover the cost of flexibility providers?
Relationship between intermittent capacity and reserve needs?

Literature

1% increase in installed intermittent capacity
Implies 0.01-0.08 % additional reserve

Germany

Change in installed intermittent capacities and reserves between 2008-14

Source: Ziegenhagen, 2013

Source: Hirth – Ziegenhagen, 2015
Overview

- Ensuring system security under liberalized market circumstances
- Challenges from connecting massive RES-E resources to the grid
- Managing increased flexibility needs and costs
- Network planning and development to support RES-E integration
Reducing demand for flexibility: gate closure, intraday markets

- Wind forecasting improves close to real time -> allow gate closure close to real time -> reduced need for balancing and additional reserves

Source: Madsen (2005)
Integrating and remunerating flexibility providers

- Main flexibility providers:
 - Flexible generation – CCGT
 - Demand – response
 - Storage
 - …?

- Remuneration:
 - unlimited price spikes?
 - capacity remuneration mechanism (CRM)?

- EU proposal: CRM only if
 - regional inadequacy proved
 - CRM should be open for cross-border participants
Electricity balancing markets to be integrated cross-border

- Currently in Europe most balancing activity is carried out on a national level.
- In order to start a harmonization process in 2012 September ACER published the Framework Guidelines on Electricity Balancing in which Target Models of Balancing Energy has been framed.
- ACER has proposed a gradual process
 - integrated market for all types of balancing energy within 6 years after the entry into force of the Network Code on Electricity Balancing (NC EB) which is currently under revision by ENTSO-E.
- The main advantage of the integration of balancing market is that larger markets allow the different resources available in Europe to be used in a more effective way. This brings down the balancing costs and enhances security of supply.
- The NC EB would like to encourage a greater number of parties to offer balancing services including demand side response and intermittent sources → higher number of market players → more competitive balancing markets.
• To meet climate objectives in the electricity sector
 • 40% GHG reduction by 2030
• Help market integration of decentralized and intermittent generation
 • Share of RES-E to increase from present 29% to 50% by 2030
• Adopt electricity markets to integrate reshaped generation fleet
 • Increase flexibility of DA and ID markets; more disciplined system balancing; network development at TSO / DSO level
• Enhance demand side flexibility
 • Contracts with dynamic pricing and smart metering; aggregators and local energy communities; storage and e-mobility
Regional Operation Centers (ROC) – functions with regional relevance

- Common CB capacity calculation
- Coordinated supply security analysis
- Scoping of balancing capacity at the regional level
- Support procuring balancing capacity at the regional level
- Defining maximum entry capacity for foreign players for CRM

TSO

 procurement of balancing energy (?)

Balancing market

Capacity market

DAM/IDM

TSO/NEMO

TMS level CRM
Overview

- Ensuring system security under liberalized market circumstances
- Challenges from connecting massive RES-E resources to the grid
- Managing increased flexibility needs and costs
- Network planning and development to support RES-E integration
Network upgrade financing models 1 – Merchant or private lines

- Exclusive use of capacity by developers
- No (or negotiated) third party access - no regulated access tariff
- Line pays back from the price difference between the markets it connects
Network upgrade financing models 2 – Public purpose lines

- Main rule: **regulated third party access (rTPA)**
- Line pays back from regulated tariff set by national regulator(s)
- In case of new major infrastructure development: Commission / ACER might provide exemption from rTPA
Infrastructure regulation – building missing infrastructure of common EU interest

- **Problem**: missing infrastructure to support full EU internal electricity market integration

- **EU response**:
 - TYNDP by ENTSO-E
 - Regulation 347/2013 on developing trans-European energy infrastructure development
 - Connecting Europe Facility (5 Mrd Euro)

- **Main measures**:
 - Projects of Common Interest (PCI) selection process
 - Decision supported by system-wide Cost Benefit Analysis
 - Cost sharing: Cross Border Cost Allocation based on benefit distribution
EU Energy corridor development priorities

- North-South Gas Corridor in Western Europe
- North-South Gas Interconnections & Oil Supply
- Southern Gas Corridor
- South Western Electricity Interconnections
- Central / South Eastern Electricity Connections
- BEMIP Electricity & Gas
- North Seas Offshore Grid

- Gas
- Electricity
- Electricity and gas
- Oil and gas

Smart Grids for Electricity in the EU

© European Union – Directorate-General for Energy – November 2010
Proposed Projects of Energy Community Interest (2016)
E-highway 2050

Results

During the entire E-highway2050 project, significant interim and final results of individual work packages, including stakeholder workshops and consultations, will be published under the ‘Results’ section from 2013 to...
<table>
<thead>
<tr>
<th></th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who can provide reserve?</td>
<td>Domestic and foreign power plants, traders, consumers – accreditation is needed</td>
<td>Domestic and foreign power plants, traders, consumers – accreditation is needed</td>
<td>Domestic and foreign power plants, traders, consumers – accreditation is needed</td>
</tr>
<tr>
<td>Needed capacity</td>
<td>TSO declares</td>
<td>TSO declares</td>
<td>TSO declares</td>
</tr>
<tr>
<td>Procurement method</td>
<td>Yearly auction</td>
<td>Multistep auction: yearly/quarterly/weekly auctions</td>
<td>Yearly auction</td>
</tr>
<tr>
<td>Contract type</td>
<td>Yearly Market maker</td>
<td>Yearly Market maker, Yearly option contract</td>
<td>Yearly Market maker, Yearly option contract</td>
</tr>
<tr>
<td>Form of payment</td>
<td>Capacity fee</td>
<td>Capacity fee + energy fee</td>
<td>Capacity fee + energy fee</td>
</tr>
</tbody>
</table>
Basic characteristics of reserve procurement and balancing in Hungary II.

• Multistep auction:
 • First step: procurement on yearly/quarterly/weekly auctions
 • Second step: usage according to the result of day-ahead auction

• There are two types of contracts:
 • Market maker (dominant form)
 • The market player must provide its capacity on the daily auctions at a non-higher price than defined in the contract
 • The TSO must accept it
 • Option contracts (for the market players who do not get an offer for a market maker contract)
 • The market player can make an offer on the daily auction
 • The TSO can accept it

• Because of the characteristics of the market maker contracts, the importance of the option contracts is not so significant, and the daily auctions only play role in the defining of the mobilization order and the balancing energy fees.
The cost of the procurement of reserves in 2009-12

The total cost of securing system level reserves has escalated

The costs of BS and U/Q (Voltage and reactive power control) are negligible

Secondary and tertiary reserves have the largest share (~96%) → TSO launched auctions from 2013, sharp price decrease!

Source: MAVIR data

<table>
<thead>
<tr>
<th>Categories</th>
<th>Years</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary (+/-)</td>
<td>40</td>
<td>1 122.1</td>
<td>40</td>
<td>1 162.3</td>
<td>40</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upw ard</td>
<td>340</td>
<td>13 423.6</td>
<td>301</td>
<td>11 747.7</td>
<td>310</td>
</tr>
<tr>
<td>Dow nw ard</td>
<td>-</td>
<td>-</td>
<td>172</td>
<td>19 037.7</td>
<td>145</td>
</tr>
<tr>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upw ard</td>
<td>524</td>
<td>13 490.3</td>
<td>464</td>
<td>23 534.7</td>
<td>455</td>
</tr>
<tr>
<td>Dow nw ard</td>
<td>-</td>
<td>-</td>
<td>77</td>
<td>1476.5</td>
<td>-</td>
</tr>
<tr>
<td>Black Start</td>
<td>-</td>
<td>-</td>
<td>115.3</td>
<td>151.5</td>
<td>-</td>
</tr>
<tr>
<td>U/Q</td>
<td>-</td>
<td>-</td>
<td>-115.3</td>
<td>-151.5</td>
<td>-119</td>
</tr>
<tr>
<td>Sum</td>
<td>28 169.6</td>
<td>41 937.5</td>
<td>46 209.6</td>
<td>52 018.1</td>
<td></td>
</tr>
</tbody>
</table>

Source: MAVIR data