

RES in SEERMAP ... financing aspects

<u>Authors:</u> Gustav Resch, Lukas Liebmann, Albert Hiesl - all Energy Economics Group, TU Wien

> Contact ... Web: <u>http://eeg.tuwien.ac.at</u> Email: <u>resch@eeg.tuwien.ac.at</u>

... developed initially in the period 2002 to 2004 within the research project *Green-X* (5th framework programme of the European Commission, DG RESEARCH)

(2) RES in SEERMAP: Key inputs to the modelling exercise

► Key assumptions

To ensure maximum consistency with existing EU scenarios and projections the key input parameters of the Green-X scenarios are (as default) based on **PRIMES modelling** and the (updates of the) **Green-X database**.

Based on PRIMES*	Defined for this study	Main input sources fo					
Energy demand by sector	RES policy framework	scenario parameters					
Primary energy prices	Reference electricity prices						
Conventional supply	RES cost & learning rates						
portfolio and	(Green-X database, incl.						
conversion efficiencies	biomass)						
CO ₂ intensity of sectors	RES potential						
	(Green-X database)						
	Biomass trade specification	*Primes scenario used					
	Technology diffusion	subsequently:					
	Financing conditions	Reference case (as of 2015/2016)					

WACC – risk elements

WACC assumptions and the impact of risk (policy, technology, country)

 $WACC_{c,t,p} = WACC_{default} * f_c * f_t * f_p$

Default assumptions concerning energy technologies in Austria

WACC	default	
(in Austria)	(real)	ideal
posttax (nominal)	6.5%	4.9%
pretax (nominal)	8.7%	6.5%
pretax (real)	7.4%	5.3%

Note: Through complementary measures the investor risk can be reduced, from "real" to "ideal" (according to an assessment conducted in the DIA-CORE project)

Source: Dia-Core project (www.diacore.eu)

Technology-specific risk factor (i.e. multiplier of default WACC) **RES-electricity** Biogas 1.00-1.05 1.05 Solid biomass 1.05 Biowaste 1.1 **Geothermal electricity** 0.95 Hydro large-scale 0.95 Hydro small-scale 0.85-0.90 Photovoltaics 1.1 (1.0) Solar thermal electricity Tide & wave 1.4 (1.2) 0.95 Wind onshore Wind offshore 1.4(1.15)

Note: Numbers in brackets refer to the period post 2020.

Policy risk: Instrument-specific risk factor					
(i.e. multiplier of default WACC)					
FIT (feed-in tariff)	1.00				
FIP (feed-in premium)	1.10				
QUO (quota system with uniform tradable green certificates (TGC))	1.20				
ETS only (Emission Trading Scheme only - no dedicated RES support)	1.30				
TEN (tenders for selected RES-E technologies)	1.15				

The impact of country specific risk – our initial figures... based on www.diacore.eu

- Represents the (outdated?) status quo according to an assessment done in the DIACORE project (done in 2014-2015)
- For future trends: link to GDP per capita trends?

- Problem: mixing country- and policy-related risks → take out policy risk!
- Problem II: how to include non-EU Western Balkan countries?

	MS	WACC pretax (real)	WACC pretax (real)
		Intervie w	Triple A policies
_		Real case	Ideal situation
-	Austria	7.4%	5.3%
	Belgium	7.1%	5.8%
	Bulgaria	9.9%	6.7%
	Croatia	13.8%	7.7%
	Cyprus	10.2%	6.0%
_	Czech Republic	8.6%	6.4%
	Denmark	6.4%	5.2%
-	Estonia	11.0%	4.8%
	Finland	6.9%	4.4%
-	France	7.3%	6.1%
	Germany	4.4%	3.7%
	Greece	15.0%	9.1%
	Hungary	12.7%	7.8%
	Ireland	9.0%	6.2%
	Italy	10.4%	8.3%
	Latvia	8.8%	5.6%
	Lithuania	9.7%	5.6%
	Luxembourg	7.2%	6.0%
	Malta	9.6%	7.4%
	Netherlands	7.2%	5.6%
	Poland	10.3%	6.5%
	Portugal	9.1%	5.9%
	Romania	12.0%	7.4%
	Slovakia	9.1%	6.3%
	Slovenia	12.0%	7.8%
	Spain	10.5%	8.6%
	Sw eden	11.6%	5.3%
	UK	7.0%	5.3%
		9.4%	6.3%

The impact of country-specific risk – our alternative approach

Alternative country risk setting

DIA-CORE figures

<u>2016 data</u>	<u>weighting factor</u>										
Eurostat - long term government bond yields	10%	8.64	2.42	3.30	1.17						
RES deployment times risk ranking		279.6	46.9	196.9	1978.5						
Default risk multiplication factor		738 %	207%	282%	100%						
National Credit Rating	90%	0.44	0.56	0.67	0.84	0.44	0.44	0.56	0.44	0.56	0.56
RES deployment times risk ranking		14.4	10.7	39.8	1418.8	0.0	0.0	0.0	0.0	0.0	0.0
Default risk multiplication factor		189%	151%	126%	100%	189%	189%	151%	189%	151%	151%
Ease of getting credit	0%	0.50	0.70	0.85	0.62						
RES deployment times risk ranking		16.2	13.5	50.8	1054.9						
Default risk multiplication factor		125%	89%	73%	100%						
Average risk rating		244%	157%	142%	100%	189%	189%	151%	189%	151%	151%
Smootheining factor - low	75%	208 %	143%	131%	100%	167%	167%	138%	167%	138%	138%
Smootheining factor - medium (default)	50%	172%	128%	121%	100%	144%	144%	126%	144%	126%	126%
Smootheining factor - high	25%	127%	111%	108%	100%	117%	117%	110%	117%	110%	110%
Smootheining factor - very high	13%	118%	107%	105%	100%	111%	111%	106%	111%	106%	106%

- Remaining problem: how to make it dynamic? ... in other words, what would be the country risk by 2030, 2050, ...

Sources:

Alternative country risk setting

Eurostat - long term government bond yields

http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin:

National Credit Rating

https://www.standardandpoors.com/en_US/web/guest/home

Ease of getting credit

http://www.doingbusiness.org/

The impact of country-specific risk – our alternative approach

Remaining "problems":

- How to make it dynamic?
 - ... in other words, what would be the country risk by 2030, 2050, etc.

OUR approach \rightarrow Link to change (compared to today) in GDP per capita

- How would a common (regional) policy change the picture?

→ A regional (or EU wide harmonised) policy would have an "averaging" effect: OUR approach ... 50% determined by default country risk, 50% by regional (average) risk

The impact of country-specific risk – our alternative approach

Remaining "problems":

- How to make it dynamic?

... in other words, what would be the country risk by 2030, 2050, etc.

OUR approach \rightarrow Link to change (compared to today) in GDP per capita

→ Illustration of GDP per capita trends (Source: PRIMES, 2012, 2015)