The recent revision of *Renewable Energy Act* in Germany

Overview and results of the PV tendering scheme

Christian Redl

PODGORICA, 17 SEPTEMBER 2016
The Energiewende targets imply fundamental changes to the power system, and in turn the entire energy system.

Phase out of Nuclear Power
Gradual shut down of all nuclear power plants until 2022

Reduction of Greenhouse Gas Emissions
Reduction targets below 1990 levels:
- 40% by 2020;
- 55% by 2030;
- 70% by 2040;
- 80% to - 95% by 2050

Development of renewable energies
Share in power consumption to increase to:
40 - 45% in 2025;
55 - 60% in 2035;
≥ 80% in 2050

Increase in efficiency
Reduction of power consumption compared to 2008 levels:
- 10% in 2020;
- 25% in 2050
Policy targets required to enable the market to find efficient solutions and provide investor certainty

Renewable targets allow market actors to make efficient investment decisions – for both non-renewable and renewable investments.
Nimble RES support policies adjusted along the way considering investment risks

Renewable Energy Law (EEG) – reform steps 2000 to 2014

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>First Feed-in Tariff (FiT) in DE</td>
</tr>
<tr>
<td>2000</td>
<td>Aim: double RES capacity by 2010; FiT started, priority dispatch, guaranteed grid access, grid follows generation paradigm, cost digression</td>
</tr>
<tr>
<td>2004</td>
<td>EEG 2004</td>
</tr>
<tr>
<td>2009</td>
<td>EEG 2009</td>
</tr>
<tr>
<td>2012</td>
<td>EEG 2012</td>
</tr>
<tr>
<td>2014</td>
<td>EEG 2014</td>
</tr>
<tr>
<td>2017</td>
<td>EEG 2017</td>
</tr>
</tbody>
</table>

Pre-EEG

1991: First Feed-in Tariff (FiT) in DE

- **Aim:** Double RES capacity by 2010; FiT started, priority dispatch, guaranteed grid access, grid follows generation paradigm, cost digression

EEG 2000

- **Aim:** 20% RES in 2020; changes in FiT, curtailment regulation; feed-in management

EEG 2004

- **Aim:** 30% RES in 2020; changes in FiT, curtailment regulation; feed-in management

EEG 2009

- **Aim:** Min. 35% by 2020, FiT lowered, voluntary market premium (FiP); 52 GW cap on PV

EEG 2012

- **Aim:** 40-45% in 2025; auctions for PV; obligatory market premium (FiP); breathing cap for wind and PV

EEG 2014

- **Aim:** Min. 35% by 2020, FiT lowered, voluntary market premium (FiP); 52 GW cap on PV

EEG 2017

- **Aim:** 40-45% in 2025; auctions for PV & wind; obligatory market premium (FiP)
Renewables are being installed and owned by citizens enabled by policies: Involvement, ownership and acceptance

Ownership distribution of renewable installations, 2011
Stable regulatory and political frameworks are a precondition for the cost-efficient increase in renewable energies

WACC for investments in wind onshore projects of EU Member States

Main factors creating uncertainty

- Future policy choices
- Administrative procedures
- Market design & grid access

DiaCore Project (2015)
Deployment policies caused falling module prices, PV feed-in tariffs dropped and the end of cost digression is not reached.

Average PV feed-in tariff for new installations 2005 - 2015

Expected cost digression for large-scale PV systems 2014 - 2050

ZSW et. al (2014), own calculations

Fraunhofer ISE (2015)
Key features of the Revised German Renewable Energy Act (EEG 2017)

1. RES-E deployment based on expansion corridor (since EEG 2014)
 → In order to reach the target of at least 80% of RES-E in electricity consumption by 2050, there are intermediate targets (indicated by a ”percentage corridor”) for 2025 and 2035

2. Keep costs for future RES-E deployment at a minimum
 → Increase of EEG surcharge until 2014. Awareness of cost debate for financing renewables is important for public acceptance of the Energiewende

3. Introduction of auctions
 → Introduction of auctions for onshore wind energy, solar PV, offshore wind energy and biomass
Expansion corridor for RES-E deployment:
RES-E share of 40 - 45% by 2025 and 55 - 60% by 2030

Share of renewable energies in gross electricity consumption 2000 - 2015 and targets 2025 - 2035

AGEB (2016), EEG (2014)

* preliminary
Introduction of auctions and annual deployment according to expansion corridor

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>As of 2017:</th>
<th>Additional remarks on auctions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore wind energy</td>
<td>2,800 MW p.a.</td>
<td>As of 2020, increase to 2,900 MW p.a.</td>
</tr>
<tr>
<td>Solar PV</td>
<td>2,500 MW p.a.</td>
<td>600 MW of these 2.5 GW to be allocated via auctioning scheme (e.g. ground-mounted solar PV).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.9 GW receive EEG remuneration (small- and medium-scale rooftop installations < 750 kW)</td>
</tr>
<tr>
<td>Offshore wind energy</td>
<td>6.5 GW until 2020.</td>
<td>In case of higher deployment by 2020 (e.g., 7.7 GW instead of 6.5 GW) there will be a reduction</td>
</tr>
<tr>
<td></td>
<td>15 GW until 2030.</td>
<td>of the deployment target for later auctions</td>
</tr>
<tr>
<td>Biomass</td>
<td>150 MW p.a. in 2017-2019.</td>
<td>Existing biomass installations may be included in auctioning scheme</td>
</tr>
<tr>
<td>Hydropower, Geothermal, Landfill,</td>
<td>No participation</td>
<td>No participation in auctioning scheme</td>
</tr>
<tr>
<td>sewage treatment and mine gas</td>
<td>in auctioning scheme</td>
<td></td>
</tr>
</tbody>
</table>
Some basics regarding the introduction of auctions in Germany (EEG 2017) 1/2

The auctioning scheme...
→ ... encompasses more than 80% of newly installed renewable generation capacity

→ ... includes **technology differentiation** for the level of remuneration, including technology specific prequalification criteria

→ ... includes the following technologies:
 • Onshore wind energy > 750 kW (calculation of support based on reference yield model)
 • Solar PV, offshore wind energy > 750 kW
 • Biomass > 150 kW (including already existing installations)
Some basics regarding the introduction of auctions in Germany (EEG 2017) 2/2

- **Exempted** from auctioning scheme:
 - Geothermal, hydropower; landfill, sewage treatment and mine gas
 - Pilot projects onshore wind energy (cumulative capacity of 125 MW)

- **Level of support** determined by auctioning scheme (pay-as-bid)
- **Direct marketing of electricity** (Contract for Difference scheme)

- Transition period:
 - No retroactive effect for RES-E installations already in operation (previous "EEG" still applies)
 - Exemption for onshore wind energy & biomass installations with permit until end of December 2016 and in operation until end of 2018 (do not have to participate in auction)
Other important facts on auctions for RES-E

New aspects included to gain additional experience:

• *Joint* auctions for onshore wind energy and solar PV: 400 MW p.a. from 2018 to 2020 (Ordinance by May 2018)

• Auctions for *innovations*: no limitation to specific RES-E technologies, also combination possible. 50 MW p.a. from 2018 to 2020 (Ordinance by May 2018). Focus on system and grid benefits induced by technological innovation

• *Cross-border* auctions: joint auctions with one or more EU Member States for up to 5% of annually auctioned capacity (Ordinance will follow)
Main principle: market-based competition for setting support levels;
Broad spectrum of design features (*DE EEG 2017 provisions are underlined*)

<table>
<thead>
<tr>
<th>→ Product – what should be tendered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Required support level; Remuneration: FiT, FiP (sliding or fixed); Payment per kWh or per kW;</td>
</tr>
<tr>
<td>• Technology-neutral vs. technology-specific; De-minimis exemptions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>→ Auction procedure – how to award the contract?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Format (sealed bid/descending clock); Sealed bid: Pay-as-bid/pay-as-cleared; Periodicity & timing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>→ Project realisation – how to reach expansion goals?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Auctioning of "excess" quantity; Prequalification criteria (e.g. Permits, concessions, deposits)</td>
</tr>
<tr>
<td>• Penalties, expiration of support (in case of not built); Transfer support rights (secondary market)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>→ Enabling actor variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Simplified prequalification / lower penalities for e.g. local cooperatives, private citizens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>→ Geographical aspects – how to achieve a balanced deployment? E.g. Spatial planning, reference yield models for onshore wind; location-specific compensation as a function of wind map</th>
</tr>
</thead>
</table>
Trade-offs between the objectives of the German RES-E auctioning scheme

- Low entry barriers
- Low participation risk
- Equal treatment of bids & bidders

- Level & type of prequalifications
- Penalties

- Special rules for „small players“

- Simple general rules
- Clear definitions

Source: BNetzA (2016)
The new tender scheme for large-scale PV has yielded average remuneration levels decreasing from 92 to 73 EUR/MWh from April 2015 to August 2016

Average remuneration for large-scale PV in the 1st five PV auction rounds in Germany (PV receives the difference between the tender remuneration and the wholesale price as a sliding premium)

BNetzA (2016)
Some first lessons-learnt from German PV auctions and open questions

- Explorative process of “learning by doing”
- Pilot projects with different designs to explore
- Large-scale PV seems particularly suitable for tendering (short planning periods, rather low investments required during project planning)
- Transparent and simple auction scheme design, yet no “one size fits all” solution
- Limited applicability of insights to other technologies; Pilots for all technologies required
- Is competition possible (scarcity in the auction)? How to avoid strategic behavior?
- How to maximize realization rate?
- Optimal design of penalties / prequalification requirements / deadlines for project realization?
- How to ensure actor variety?
- How to minimize financing costs to enable efficient auctions?
Montenegro: Current and future cost of solar energy

Levelised cost of electricity (LCOE) from large-scale solar PV in Montenegro

Full load hours: 1100 - 1350 kWh/kWp p.a., Cost of capital (WACC): between 5% and 15%

Calculation based on Fraunhofer ISE (2015); Ranges include differences in irradiation within the country and scenarios of technology and global market development; global market for modules, inverters and other cost components is assumed, short-term effects of higher cost in new markets (e.g. 1st GW in a specific country) not considered.
Stable regulatory and political frameworks are a precondition for the cost-efficient increase in renewable energies

Main factors creating uncertainty

- Future policy choices
- Administrative procedures
- Market design & grid access

WACC for investments in wind onshore projects of EU Member States

DiaCore Project (2015)
Thank you for your attention!

Questions or Comments? Feel free to contact me:
christian.redl@agora-energiewende.de

Agora Energiewende is a joint initiative of the Mercator Foundation and the European Climate Foundation.
Cost competitiveness and EEG surcharge

Initial experience was gained by implementing auctions for large-scale ground-mounted solar PV in 2015 (500 MW in total).

- Initial phase, only for ground-mounted solar PV: 3 rounds of auctions were carried out in 2015.

<table>
<thead>
<tr>
<th></th>
<th>April 2015</th>
<th>August 2015</th>
<th>December 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price for support (average)</td>
<td>9.17 ct/kWh</td>
<td>8.48 ct/kWh</td>
<td>8.00 ct/kWh</td>
</tr>
<tr>
<td>Capacity auctioned</td>
<td>150 MW</td>
<td>150 MW</td>
<td>200 MW</td>
</tr>
<tr>
<td>Auction volume awarded</td>
<td>157 MW</td>
<td>159 MW</td>
<td>204 MW</td>
</tr>
<tr>
<td>Auction volume submitted</td>
<td>715 MW</td>
<td>558 MW</td>
<td>562 MW</td>
</tr>
<tr>
<td>Excluded bids</td>
<td>144 MW (20%)</td>
<td>33 MW (5%)</td>
<td>33 MW (5%)</td>
</tr>
<tr>
<td>Pricing method</td>
<td>Pay-as-bid</td>
<td>Uniform pricing</td>
<td>Uniform pricing</td>
</tr>
</tbody>
</table>

Expansion corridor for RES-E deployment
... broken down into gross deployment for the different technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>As of 2017:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore wind energy</td>
<td>2,800 MW p.a.</td>
</tr>
<tr>
<td>Solar PV</td>
<td>2,500 MW p.a.</td>
</tr>
<tr>
<td>Offshore wind energy</td>
<td>6.5 GW until 2020. 15 GW until 2030.</td>
</tr>
<tr>
<td>Hydropower, Geothermal, Landfill, sewage treatment and mine gas</td>
<td></td>
</tr>
</tbody>
</table>
Auctions – when and how much?

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>When? How much?</th>
</tr>
</thead>
</table>
| Onshore wind energy | 2017: 3 rounds (2.8 GW in total)
2018 and 2019: 3 rounds (2.9 GW in total) |
| Solar PV | As of 2017: 3 rounds (600 MW in total) |
| Biomass | 2017-19: 1 round (150 MW in total)
2020-22: 1 round (200 MW in total) |
| Offshore wind energy | As of 2021: installations to become operational in 2026 (on pre-investigated sites) will participate in auctioning scheme.
Annually 700-900 MW auctioned (target: annual deployment of 840 MW as of 2026). Bids will be submitted for pre-investigated offshore wind sites ("Danish model").
2017-18: 1,550 MW auctioned (only projects that have concluded permitting procedure); to turn into operation between 2021-2025. |